A Quantitative and
Qualitative Evaluation
of LLM-Based
Explainable Fault
Localization

[Sungmin Kang, Gabin An], Shin Yoo
Presented on 2024-07-17 by Sungmin

Painting by Elena Katsyura, Slice of Citrus, 2013

1.
Background

Fault Localization

public LegendItemCollection getlLegendItems() {
LegendItemCollection result = new LegendItemCollection();
if (this.plot == null) {
return result;
}
int index = this.plot.getIndex0f(this);
CategoryDataset dataset = this.plot.getDataset(index);
if (dataset != null) {
return result;
I
int seriesCount = dataset.getRowCount();
if (plot.getRowRenderingOrder().equals(SortOrder.ASCENDING)) {
for (int i = 0; i < seriesCount; i++) {
if (isSeriesVisibleInLegend(i)) {
LegendItem item = getLegendItem(index, 1i);
if (item != null) {
result.add(item);

Explanations for FL results are supported by devs

M Strongly Agree m Agree M Neutral M Disagree M Strongly Disagree

100%
o

80%

70%

& 60%

£ 50%
[3]
€ 40%

30%

b .

=

0% [
Rationale Adoption w/o Adoption w/o
Rationale IDE
Statements

Figure 9: Other Factors Affecting Adoption

Kochhar et al. (2016) find that developers felt that FL results should be accompanied with a rationale of the results.

Developer quotes from Kochhar et al.

e Rationale is needed for bug fixing and code quality im-
provement

— “Because to make a decisions about bug fixing I want to
exactly know why the automated tool “thinks” that the
code have a bug.”

— “... I would also need to provide the fix, so I feel some
rationale would also help with that.”

— “Rationale gives understanding which will help in tm-
proving the code quality for future”

In our own developer study as well, developers expressed similar sentiments on the need of explanations/rationales.

However, few FL techniques provide rationales

Table 1. A comparison of existing FL techniques with AutoFL. The precision of SBFL, MBFL, and IRFL
was recalculated based on the artifacts of Zou et al. [53]; for other techniques, precision comes from the
corresponding papers. Wu et al. [46] only evaluate statement-level FL, so their precision could not be compared.

Required Artifact Prec@5onD4] Time Multilang. Rationale

SBFL Test suite 61% [53] minutes yes no

MBFL Test suite 54% [53] hours yes no

IRFL Bug report 3% [53] seconds yes no
CombineFL [53] All of the above 69% [53] hours no no
DeepRLA4FL [24] Test suite 79% [24] hours no no
UniVal [22] Pass/Fail test 75% [22] minutes® no no
SmartFL [52] Pass/Fail test 70% [52] minutes no no
Wu et al. [46] | Buggy method/class - - yes yes
AutoFL Single test Up to 71% minutes yes yes

In our comparison of FL techniques at the time of writing, only AutoFL and Wu et al. provided a rationale.

Large Language Models (LLMs)

0 Would you say that you are good at the use of the English language,
and explaining things in it?

Yes, | am designed to be proficient in using the English language and explaining concepts clearly.
Whether you need help with grammar, writing, understanding complex topics, or simply seeking

information, I'm here to assist. How can | help you today?

ISP

LLMs are trained over massive natural language data, so they are good at natural language.

Application of LLMs to FL is nontrivial

Tokens

gpt-3.5-turbo-0613 4,096

e
gpt-4o0| 128,000

Lang| 535,075

Sour_ce Time| 547,840
é?\?;il'\z/: Closure| 1,084,356
files) Math| 1,696,162
Chart| 1,717,406

LLM context length prevents LLMs from being naively applied to FL.

2,
AutoFL

Overview

Two large “stages” in AutoFL execution

Explanation Generation el - FL Prediction
oL Stage 1 P stage 2 |
Algorithm
Bug Bug Query
Information Explanation Location Aniswer
Language O
Model Function _uptoN
Interaction times System Under Test
(N\
= get_class_covered |«
Coverage
= get_method_covered [«
= get_code_snippet |«
Codebase
= get_comments <
\. J

10

Stage 1: Starting prompt for AutoFL

Listing 1. System Prompt for LLM

You are a debugging assistant. You will be presented with a failing test, and tools (functions) to
< access the source code of the system under test (SUT). Your task is to provide a step-by-
< step explanation of how the bug occurred, based on the failing test and the information
< you retrieved using tests about the SUT. You will be given N chances to interact with
< functions to gather relevant information. An example answer would look like follows.

<HANDCRAFTED ROOT CAUSE ANALYSIS EXAMPLE>

The starting (“system”) prompt provides general instructions to the LLM.

11

Stage 1: Bug-specific prompt

Listing 2. Example prompt from Defects4) Lang-48

1 The test ~...EqualsBuilderTest::testBigDecimal()~ failed. The test looks like:
2

3 ~"java

4 381 : public void testBigDecimal() {

5 382 : BigDecimal ol = new BigDecimal("2.0");

6 383 : BigDecimal 02 = new BigDecimal("2.00");

7 385 : assertTrue(new EqualsBuilder().append(o1, 02).isEquals()); // error occurred here
8 38 : }

9 ~--

10

11 It failed with the following error message and call stack:

12 °°°

13 junit.framework.AssertionFailedError
14 at ...EqualsBuilderTest::testBigDecimal (EqualsBuilderTest. java:385)
15 °°°
16 Start by calling the “get_failing_tests_covered_classes™ function.

The bug-specific (“user”) prompt provides bug details, along with a hint to start by calling a function.

12

Stage 1: Iterative calling of functions

Function Call Made: get_failing_tests_covered_classes()

Function success. Response length: 272 tokens. Click to Show:

The failing test test2947660 isin AbstractCategoryItemRendererTests, so it likely involves classes LineAndShapeRenderer and
AbstractCategoryItemRenderer inthe org.jfree.chart.renderer.category package. It could also involve DefaultCategoryDataset and
CategoryPlot inthe org.jfree.data.category and org.jfree.chart.plot packages respectively, which are used within the test. Lastly,
LegendItemCollection fromthe org.jfree.chart package is the object whose state leads to the test assertion failure.

Let's investigate the method in AbstractCategoryItemRenderer that is involved in the failing test. Call the
get_failing_tests_covered_methods_for_class function for the class AbstractCategoryItemRenderer .

Function Call Made:
get_failing_tests_covered_methods_for_class(class_name=org.jfree.chart.renderer.category.AbstractCategoryItemRenderer)

Function success. Response length: 23 tokens. Click to Show:

The failing test covers three methods in the AbstractCategoryItemRenderer class: the constructor .AbstractCategoryItemRenderer() ,the
method .setPlot(org.jfree.chart.plot.CategoryPlot) , and the method .getLegendItems() .

Given the error message and the test code, the problem seems to arise when the getLegendItems() method is called, as this is where the
assertion fails. Therefore, let's take a closer look at the getLegendItems() method.

Call the get_code_snippet function for getLegendItems() .

Function Call Made:
get_code_snippet(signature=org.jfree.chart.renderer.category.AbstractCategoryItemRenderer.getLegendItems())

Function success. Response length: 366 tokens. Click to Show:

The getLegendItems() method in AbstractCategoryItemRenderer follows these steps:

1. It creates an empty LegendItemCollection named result.

2.Ifthe plot of this objectis null, it immediately returns the empty result .
2 14 Arcte the inAavy Af +hic nhiort within the nladt+

13

Stage 1: Functions to call (Coverage)

Function Call Made: get_failing_tests_covered_classes()

Function success. Response length: 272 tokens. Click to Show:

{

"org.jfree.chart.renderer.category": [
"LineAndShapeRenderer",
"AbstractCategoryItemRenderer"

]I

"org.jfree.chart.plot": [
"DefaultDrawingSupplier",
""CategoryPlot",
"PlotOrientation",
“Plot",
"DatasetRenderingOrder"

]I

"org.jfree.chart.util": [
"PaintList",
"RectangleInsets",
"AbstractObjectList",
"UnitType",
"ShapeList",
"DefaultShadowGenerator",
"SortOrder",
"StrokeList",
""ResourceBundleWrapper",
"ObjectList",
"BooleanList"

]I

"org.jfree.data.category": [
"AbstractCategoryDataset",
"DefaultCategoryDataset"

Function Call Made:
get_failing_tests_covered_methods_for_class(class_name=org.jfree.chart.renderer.category.AbstractCategoryItemRenderer)

Function success. Response length: 23 tokens. Click to Show:

[
".getLegendItems()",
".setPlot(org.jfree.chart.plot.CategoryPlot)",
".AbstractCategoryItemRenderer()"

]

Click to Fold

14

Stage 1: Functions to call (Codebase)

Function Call Made:
get_code_snippet(signature=org.jfree.chart.renderer.category.AbstractCategoryItemRenderer.getLegendItems())

Function success. Response length: 366 tokens. Click to Show:

1790 : public LegendItemCollection getLegendItems() {

1791 : LegendItemCollection result = new LegendItemCollection();
1792 : if (this.plot == null) {

17935 return result;

1794 : }

1795 : int index = this.plot.getIndex0f(this);

1796 : CategoryDataset dataset = this.plot.getDataset(index);
179781 if (dataset != null) {

1798 : return result;

1799 : h

1800 : int seriesCount = dataset.getRowCount();

1801 : if (plot.getRowRenderingOrder().equals(SortOrder.ASCENDING)) {
1802 : for (int i = 0; i < seriesCount; i++) {

1803 : if (isSeriesVisibleInLegend(i)) {

Function Call Made:
get_comments(signature=org.jfree.chart.renderer.category.AbstractCategoryItemRenderer.getLegendItems())

Function success. Response length: 75 tokens. Click to Show:

Returns a (possibly empty) collection of legend items for the series
that this renderer is responsible for drawing.

*
*
*
* @return The legend item collection (never null).
*
*

@see #getLegendItem(int, int)

15

Stage 1: Termination

Explanation Generation el - FL Prediction
oL Stage 1 P stage 2 |
Algorithm
Bug Bug Query
Information Explanation Location Aniswer
Language O
Model Function _uptoN
Interaction times System Under Test
(N\
= get_class_covered |«
Coverage
= get_method_covered [«
= get_code_snippet |«
Codebase
= get_comments <
\. J

Stage 1 terminates when the LLM no longer calls a function, or when it reaches its function call limit (10).

Stage 2: Getting concrete FL results

Listing 3. Prompt to Request the Fault Location

Based on the available information, provide the signatures of the most likely culprit methods for
< the bug. Your answer will be processed automatically, so make sure to only answer with the
< accurate signatures of the most likely culprit (in ~ClassName.MethodName (ArgType1l,
<~ ArgType2, ...)"~ format), without commentary (one per line).

The bug-specific (“user”) prompt provides bug details, along with a hint to start by calling a function.

17

Getting final results - example

The JavaDoc for the getLegendItems() methodin AbstractCategoryItemRenderer class states that this method returns a (possibly empty)

= collection of legend items for the series that this renderer is responsible for drawing.

This aligns with our understanding regarding this method's behavior, based on its code and its use in the test.
From the available evidence, it is reasonable to suggest that the fault causing the test failure lies within the getLegendItems() method in the
AbstractCategoryItemRenderer class. The code should populate result with relevant LegendItem objects when a dataset exists;
currently, it just returns the initially empty legend item collection whether or not a dataset exists.
The fix should involve modifying the logic in getLegendItems() , ensuring that legend items are correctly added to result whena dataset is
present. org.jfree.chart.renderer.category.AbstractCategoryltemRenderer.getLegendltems()
Based on the available information, provide the signatures of the most likely culprit methods for the bug. Your answer will be processed
automatically, so make sure to only answer with the accurate signatures of the most likely culprit (in ClassName.MethodName (ArgTypel,
ArgType2, ...) format), without commentary (one per line).

org.jfree.chart.renderer.category.AbstractCategoryltemRenderer.getLegendltems()

° The final answer matched the true buggy method
org.jfree.chart.renderer.category.AbstractCategoryItemRenderer.getLegendItems() .

18

Collating multiple LLM runs

AutoFL Predictions (R=5)

! 3
A,B B i B,C D FL Ranking
1.B e oo
2.D o
> | 3.A e
4. C o
5. E
. :g‘?/R :gg/R :g-?/R . .) confidence=0.6

Actual Locations

Multiple LLM answers are combined to yield a ranking, improving performance and provides a confidence estimate.

19

3.. []
Empirical
Results

RQ1: FL performance comparison with baselines

240 A
220 A
200 A

X

) 1801

o

8 160 -
1401
1204
100 4

FL Performance Comparison (Java)

D4J v1.0
—%— AutoFL-GPT4 (x2)
—— AutoFL-GPT3.5 (x5)
—%— Test-GPT3.5 (x5)
-+ DStar
== Ochiai
—x— Metallaxis

D4J v1.0 w/o Closure

—#— AutoFL-GPT3.5 (x5)
—#— SmartFL

(a) FL evaluation on Defects4)

250 A

200 1

acc@k

100 1

50 1

FL Performance Comparison (Python)

—»— AutoFL-GPT4 (x2)
—*— AutoFL-GPT3.5 (x5)
« —— Test-GPT3.5 (x5)

________ * ¢ DStar

————)& :
B T X Sy OChIaI
’,”’ """"" NV RTRTPITET LR IR
e et
o
1 3 3 : |
k

(b) FL evaluation on BugsInPy

AutoFL with GPT-4 outperforms all standalone techniques that we compared against.

21

RQ1: Performance gain from reruns

Rerun To Performance (Java) Rerun To Performance (Python)

260
240
-%- GPT-4(x2)
-X- GPT-4 (x1) 2201
—»— GPT-3.5 (x5) Aé) 200 -
GPT35(4) §
GPT35(x3) © 1807
GPT-3.5 (x2) 1604
GPT-3.5 (x1)
140 1
120 1
100 =
2 3 4 5 1 2 3 4 5
k k
(a) Defects4) (b) BugsInPy

Fig. 4. Performance of AuToFL as R increases, for Defects4) and BugsInPy.

Combining the result of multiple LLM runs improves the FL performance of AutoFL.

-X- GPT-4(x2)
-%- GPT-4(x1)
—%— GPT-3.5 (x5)
GPT-3.5 (x4)
GPT-3.5 (x3)
GPT-3.5 (x2)
GPT-3.5 (x1)

22

RQ1: AutoFL function call patterns

Function Call Distribution at Each Step Function Call Distribution at Each Step

Step 0 Step 0
Step 1 Step 1 i
Step 2 Step 2 I |
Step 3 Step 3 EEEe—————
Step 4 Step 4 =
Step 5 Step 5 |
Step 6 - BN class_cov Step 6] EER package_cov
gtep g [method_cov gtep g [B class_cov

tep 8 - Bl snippet tep 1 method_cov

Stsetgag = comments StSetgplg - I snippet
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Runs Proportion of Runs
(a) Defects4) (b) BugsinPy
Fig. 5. Function call distribution for AutoFL-GPT3.5.

In the process of fault localization, AutoFL tends calls functions according to the patterns given above.

23

RQ2: Confidence and FL performance

Table 4. Spearman’s rank correlation coefficients between AutoFL confidence and FL performance metrics in
each benchmark (with “*’ denoting p < 0.0001). AuToFL is rerun 5 times using GPT-3.5.

Correlation with Precision@1 Reciprocal Rank Average Precision

Defects4] +0.57* +0.67* +0.70*
BugsInPy +0.52* +0.50" +0.49*

AutoFL confidence was strongly predictive of FL performance; thus confidence could help improve AutoFL precision.

24

RQ3: Explanation characteristics

Table 5. Explanation rating results of AutoFL-GPT3.5
Subset Exists Accurate Imprecise Concise Useful ‘Bland’ Total
Individual Explanations 83.7% 20.0% 26.3% 9.3% 8.0% 43.0% 300
0.00 < Confidence < 0.25 78.3% 10.0% 24.2% 3.3% 1.7% 46.7% 120
0.25 < Confidence < 0.50 87.5% 23.8% 28.83% 7.5% 11.3% 43.8% 80
0.50 < Confidence < 0.75 81.5% 26.2% 24.6% 16.9% 12.3% 36.9% 65
0.75 < Confidence < 1.00 97.1% 34.3% 31.4% 20.0% 14.3% 40.0% 35
Aggregated By Bug 100% 56.7% 66.7% 31.7% 233% 93.3% 60
0.00 < Confidence < 0.25 100% 37.5% 70.8% 16.7% 8.3% 95.8% 24
0.25 < Confidence < 0.50 100% 62.5% 68.8% 31.3% 31.3% 93.8% 16
0.50 < Confidence < 0.75 100% 69.2% 53.8% 46.2% 30.8% 84.6% 13
0.75 < Confidence < 1.00 100% 85.7% 71.4% 57.1% 42.9% 100% 7

Overall 20% of explanations were accurate; over five runs/bug, at least one explanation was accurate for 56.7% of bugs.

RQ4: Developer study - Setting

x16

Explain experiment

Given AutoFL results
(localization &
explanation)
fix the bug

Given AutoFL results
(localization &
explanation)
fix the bug

Check dev understood
task

Submit patch

X2

Do you
want
FL?

Do you
want
FL
expls?

AutoFL
good/
bad?

26

RQ4: Developer study - Results

FL 13 developers said FL, even without explanations,
wanted? would be helpful, particularly for unfamiliar code.

FL expl. Four developers said explanations were necessary;
wanted? eight said they were useful.

AutoFL Natural language description of error was helpful;
good/bad inaccurate and redundant explanations were not.

Ideal Explanations with a clear format, along with dynamic
Expl. values provided, presented with a few hypotheses.

27

4.
Discussion

Future Directions

Applying AutoFL to software
on the industrial scale

Improving the interface for presenting
explanations generated by AutoFL

Automatically identifying accurate explanations
from a group of generated explanations

29

Predicting Execution Accuracy via Test Generation

Table 6. Spearman Correlation between explanation quality predictors and actual quality. Results with

p < 0.01 are marked with *, and results significant with p < 0.001 are marked with **.

name Test Score APR Score GPTysfu1 Length
Accurate +0.2358" +0.1946* +0.3759** +0.3009™*
‘Wrong’ (only imprecise) +0.0408 —0.0643 +0.3266™* +0.3271**
Useful +0.2635** +0.1942* +0.2371** +0.1585
‘Bland’ —-0.2364* —0.1105 -0.6026™* —0.5391**
FL Accurate +0.2737** +0.4923** +0.1437 +0.1528

Execution results of executable artifacts were predictive of accurate bug explanations.

30

Conclusion

H Read our preprint!

Fault localization is a task in which presenting explanations to
developers is critical for usability.

We present AutoFL, which uses an LLM to autonomously inspect
repository content, localize the fault, and explain the bug.

AutoFL shows state-of-the-art method-level FL performance,
and generated explanations received positively by developers.

Contact us at sungmin.kang@kaist.ac.kr / gabin.an@kaist.ac.kr
Find our preprint with the QR code above, or by searching for
“A Quantitative and Qualitative Evaluation of LLM-Based Explainable Fault Localization”

31

mailto:sungmin.kang@kaist.ac.kr
mailto:gabin.an@kaist.ac.kr

*

Extra Slides

