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Usual Automated Debugging
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All want to use available information efficiently
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…but no theory to analyze/provide directions
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Curation of new 
research ideas
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Bayesian Inference

9(From Wikipedia)



Automated Debugging Plugins
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● As hypotheses (H), we set debugging results, e.g. “line k is buggy”.
● As evidence (E), we set execution results, e.g. “test t failed”.



The “posterior”
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● What we ultimately want to know is P(H|E): How likely is it that 
hypothesis H is true, given evidence E? 
○ For example, “How likely is it that line k is the buggy line, given test t failed?

● However, this term is difficult to calculate directly. Thus we calculate it 
using the terms on the right-hand side… 



Right-hand-side terms
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● P(E|H) [likelihood]: Assuming the hypothesis, how likely is the 
evidence?
○ For example, “If line k is the buggy line, how likely is that test t would fail?”

● P(H) [prior]: Prior to seeing the evidence E, how likely was the 
hypothesis?
○ For example, “How likely was line k to be the buggy line the first place?”

● P(E): A normalization term (not important for our purposes)



Overall, in automated debugging:

● We want to infer the location (l) to apply a fix action (a), based on the 
available data (D):

● And fault localization is a special case of automated debugging, with 
probabilities marginalized over the action space:
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First example of analysis: SBFL
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Many formulae have been proposed

15(From Yoo, Evolving Human Competitive Spectra-Based Fault Localisation Techniques, 2013)



Assumptions about SBFL
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Single Fault Assumption - assumes a single fault, for simplicity.

1

Deterministic Code - no flakiness.

2

Existence of failing test case - without one, it would be 
impossible to locate a bug.

3



Likelihood Function

● If a test executes the fault, the test will fail with probability p
● If a test doesn’t execute the fault, it cannot fail
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Simplified Conditional Probability

Which is equivalent to Op1, one of the maximal formulae from Yoo et al:
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Back to general automated debugging

● More generally, we would like to infer both the entire patch - both the 
location and the fix action.

● Unlike the space of locations (l), actions are potentially infinite, so it 
has previously been difficult to come up with different formulae.
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One such attempt: Unified Debugging

● As an example, we could analyze the unified debugging approach 
SeAPR from Benton et al., whose core assumption is that:
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● Patches that make a previously failing test pass after patch 
application are likely to be indicative of the actual patch location (8) 
and vice versa (9), thus p1 > p2.
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Optimal formula under assumptions

● …which is equivalent to the Wong2 formula. Unfortunately, Benton et 
al. didn’t experiment with Wong2:

21(From Benton et al., Self-Boosted Automated Program Repair, 2021)



Recap of framework
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As a means of analyzing automated debugging techniques, we 
proposed using Bayesian inference.

1

With the framework, we could derive an SBFL formula proven to 
to be maximal from first principles alone.

2

Furthermore, using the framework, we could suggest a different  
formula for unified debugging that was better adapted.

3



3.
Prioritizing 

Patches

🔀



BAPP, a patch prioritization technique
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🚰

Derived from 
Framework

Most implementation 
details are not guessed, 

but derived

🔢

Uses Variable 
Values

Uses variable values as 
additional information 

to prioritize patches



Principle of Value Change

● We observe the value change that would happen when a patch is 
applied (with debuggers, to efficiently extract values for patches):

● If the correct fix (l, a) would change internal values of t, there is a 
chance the test would fail (13); if the fix does not induce any chance, a 
test cannot fail (14).
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Final Formula

● Skipping a lot of intermediate derivation steps, we get:

● Where                                                                                , and intuitively 
controls how much to weight value change results.

● Fault localization also possible by marginalizing over fix action space.
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Other modifications

● P(l, a) = P(a|l) x P(l): Patch probabilities should be multiplied with 
location probabilities, and sorted accordingly.

● P(l, a) = P(a|l) x P(l): but the probability of a patch given a location is 
often ignored. By modelling this term, we deprioritize patches from 
locations with many possible patches:
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Location 1, susp=0.3 Location 2, susp=0.4

Act. 1,
1/2

Act. 2,
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RQ1: Patch Prioritization Performance
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RQ2: Fault Localization Performance
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RQ3: Ablation Study
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4.
Future Work
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Framework-suggested future work
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Patch action identification, 
then localization:
P(l, a) = P(l|a)P(a)

1

Efficient inference 
algorithms for multiple-fault 

scenarios

3

Modelling observation 
correlation

2

Incorporation of other 
information, such as 

dependency

4



Conclusion
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Despite the long history of research in automated debugging, 
there was no theoretic framework behind the techniques. 

1

We propose that Bayesian inference can be used to 
theoretically analyze existing techniques.

2

From our theoretic framework, we derive a patch prioritization 
technique, and discuss interesting future work stemming from it.
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Contact us at sungmin.kang@kaist.ac.kr
Find our preprint with the QR code above, or by searching for “A Bayesian Framework for Automated Debugging”

Read our preprint!
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LLM/ML

● Machine learning, or large language models provide a strong prior for 
debugging results

● However, in my view, they do not seem to change the need or 
formulation of the incorporation of new information

● In this sense, perhaps embeddings are more interesting in the context 
of my framework, as they might provide means to model result 
correlation, etc.
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