
A Bayesian
Framework for
Automated
Debugging
[Sungmin Kang, Wonkeun Choi], Shin Yoo
Presented on 2023-07-18 by Sungmin
Painting by Georges Seurat, The Channel at Gravelines, 1890

1.
Automated
Debugging

🪲

Usual Automated Debugging

3

🔍

Fault
Localization

Finding which
file, function, line

actually contains bug

🔨

Program
Repair (APR)

Correcting the code

🪶

Failing Test

Using a failing test,
among other info…

All want to use available information efficiently

4

SBFL: Using
Coverage

Information
MBFL: Using

Mutation Info
IRFL: Using Lexical

Affinity to Bug
Report…

Fault
Localization

Template-based:
apply appropriate

patches using
syntax information

Neural: neural
networks using

syntax information
…

Program
Repair (APR)

🪶

Failing Test

Using a failing test,
among other info…

…but no theory to analyze/provide directions

5

SBFL: Using
Coverage

Information
MBFL: Using

Mutation Info
IRFL: Using Lexical

Affinity to Bug
Report…

Fault
Localization

Template-based:
apply appropriate

patches using
syntax information

Neural: neural
networks using

syntax information
…

Program
Repair (APR)

🪶

Failing Test

Using a failing test,
among other info…

6

Clarification of
assumptions

Concrete
suggestions from

predictions

Curation of new
research ideas

Benefits of having a theoretic framework

7

⛰

2.
Bayesian

Framework

🔀

3.
Prioritizing

Patches

🏁

4.
Future
Work

Clarification of
assumptions

Concrete
suggestions from

predictions

Curation of new
research ideas

Presentation Organization

2.
Bayesian

Framework

⛰

Bayesian Inference

9(From Wikipedia)

Automated Debugging Plugins

10

● As hypotheses (H), we set debugging results, e.g. “line k is buggy”.
● As evidence (E), we set execution results, e.g. “test t failed”.

The “posterior”

11

● What we ultimately want to know is P(H|E): How likely is it that
hypothesis H is true, given evidence E?
○ For example, “How likely is it that line k is the buggy line, given test t failed?

● However, this term is difficult to calculate directly. Thus we calculate it
using the terms on the right-hand side…

Right-hand-side terms

12

● P(E|H) [likelihood]: Assuming the hypothesis, how likely is the
evidence?
○ For example, “If line k is the buggy line, how likely is that test t would fail?”

● P(H) [prior]: Prior to seeing the evidence E, how likely was the
hypothesis?
○ For example, “How likely was line k to be the buggy line the first place?”

● P(E): A normalization term (not important for our purposes)

Overall, in automated debugging:

● We want to infer the location (l) to apply a fix action (a), based on the
available data (D):

● And fault localization is a special case of automated debugging, with
probabilities marginalized over the action space:

13

First example of analysis: SBFL

14

🔍

Localization
Formula

Aggregator of matrix

?

Finding
Location

“Suspiciousness” for
each code element

🪶

Test Coverage
+ Pass/Fail

Coverage matrix

Many formulae have been proposed

15(From Yoo, Evolving Human Competitive Spectra-Based Fault Localisation Techniques, 2013)

Assumptions about SBFL

16

Single Fault Assumption - assumes a single fault, for simplicity.

1

Deterministic Code - no flakiness.

2

Existence of failing test case - without one, it would be
impossible to locate a bug.

3

Likelihood Function

● If a test executes the fault, the test will fail with probability p
● If a test doesn’t execute the fault, it cannot fail

17

Simplified Conditional Probability

Which is equivalent to Op1, one of the maximal formulae from Yoo et al:

18

Back to general automated debugging

● More generally, we would like to infer both the entire patch - both the
location and the fix action.

● Unlike the space of locations (l), actions are potentially infinite, so it
has previously been difficult to come up with different formulae.

19

One such attempt: Unified Debugging

● As an example, we could analyze the unified debugging approach
SeAPR from Benton et al., whose core assumption is that:

9

● Patches that make a previously failing test pass after patch
application are likely to be indicative of the actual patch location (8)
and vice versa (9), thus p1 > p2.

20

Optimal formula under assumptions

● …which is equivalent to the Wong2 formula. Unfortunately, Benton et
al. didn’t experiment with Wong2:

21(From Benton et al., Self-Boosted Automated Program Repair, 2021)

Recap of framework

22

As a means of analyzing automated debugging techniques, we
proposed using Bayesian inference.

1

With the framework, we could derive an SBFL formula proven to
to be maximal from first principles alone.

2

Furthermore, using the framework, we could suggest a different
formula for unified debugging that was better adapted.

3

3.
Prioritizing

Patches

🔀

BAPP, a patch prioritization technique

24

🚰

Derived from
Framework

Most implementation
details are not guessed,

but derived

🔢

Uses Variable
Values

Uses variable values as
additional information

to prioritize patches

Principle of Value Change

● We observe the value change that would happen when a patch is
applied (with debuggers, to efficiently extract values for patches):

● If the correct fix (l, a) would change internal values of t, there is a
chance the test would fail (13); if the fix does not induce any chance, a
test cannot fail (14).

25

Final Formula

● Skipping a lot of intermediate derivation steps, we get:

● Where , and intuitively
controls how much to weight value change results.

● Fault localization also possible by marginalizing over fix action space.

26

Other modifications

● P(l, a) = P(a|l) x P(l): Patch probabilities should be multiplied with
location probabilities, and sorted accordingly.

● P(l, a) = P(a|l) x P(l): but the probability of a patch given a location is
often ignored. By modelling this term, we deprioritize patches from
locations with many possible patches:

27

Location 1, susp=0.3 Location 2, susp=0.4

Act. 1,
1/2

Act. 2,
1/2

Act. 1,
1/3

Act. 2,
1/3

Act. 3,
1/3

RQ1: Patch Prioritization Performance

28

RQ2: Fault Localization Performance

29

RQ3: Ablation Study

30

4.
Future Work

🏁

Framework-suggested future work

32

Patch action identification,
then localization:
P(l, a) = P(l|a)P(a)

1

Efficient inference
algorithms for multiple-fault

scenarios

3

Modelling observation
correlation

2

Incorporation of other
information, such as

dependency

4

Conclusion

33

Despite the long history of research in automated debugging,
there was no theoretic framework behind the techniques.

1

We propose that Bayesian inference can be used to
theoretically analyze existing techniques.

2

From our theoretic framework, we derive a patch prioritization
technique, and discuss interesting future work stemming from it.

3

Contact us at sungmin.kang@kaist.ac.kr
Find our preprint with the QR code above, or by searching for “A Bayesian Framework for Automated Debugging”

Read our preprint!

mailto:sungmin.kang@kaist.ac.kr

*
Extra Slides

🏠

LLM/ML

● Machine learning, or large language models provide a strong prior for
debugging results

● However, in my view, they do not seem to change the need or
formulation of the incorporation of new information

● In this sense, perhaps embeddings are more interesting in the context
of my framework, as they might provide means to model result
correlation, etc.

35

