Ian

A Bayes

Framework for
Automated

iy,

B N o A

ing

Wonkeun Choi], Sh

Presented on 2023-07-18 by Sungm

Debugg

Yoo

in

In Kang,

[Sungm

In

1890

, The Channel at Gravelines,

Painting by Georges Seurat




1.
Automated
Debugging




Usual Automated Debugging

Fault Program
Failing Test Localization Repair (APR)

Using a failing test, Finding which Correcting the code
among other info... file, function, line
actually contains bug



All want to use available information efficiently

Failing Test

Using a failing test,
among other info...

Fault
Localization

SBFL: Using
Coverage
Information
MBFL: Using

Mutation Info
IRFL: Using Lexical
Affinity to Bug
Report...

Program
Repair (APR)

Template-based:
apply appropriate
patches using
syntax information
Neural: neural
networks using
syntax information




..but no theory to analyze/provide directions

—
e—— e e | —

. i




Benefits of having a theoretic framework

Clarification of
assumptions

Concrete
suggestions from
predictions

Curation of new
research ideas




Presentation Organization

Clarification of
assumptions

Concrete
suggestions from
predictions

2. .
Bavesian
Framework

Curation of new
research ideas

4,
Future
Wor




2.
Bayesian
Framework




Bayesian Inference

Bayesian inference is a method of statistical inference in which Bayes' theorem is used to update the
probability for a hypothesis as more evidence or information becomes available. Bayesian inference is an
important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly

P(E | H) - P(H)
P(E)

P(H | E) =

(From Wikipedia)



Automated Debugging Plugins

P(E| H)-P(H)
P(E) '

P(H | E) =

As hypotheses (H), we set debugging results, e.g. “line k is buggy”.
As evidence (E), we set execution results, e.g. “test t failed”.

10



The “posterior”

P(E| H)-P(H)
P(E) '

What we ultimately want to know is P(H|E): How likely is it that
hypothesis H is true, given evidence E?

o For example, “How likely is it that line k is the buggy line, given test t failed?
However, this term is difficult to calculate directly. Thus we calculate it
using the terms on the right-hand side...

P(H | E) =

11



Right-hand-side terms

P(E| H)-P(H)
P(E) '

P(E|H) [likelihood]: Assuming the hypothesis, how likely is the
evidence?

o For example, “If line k is the buggy line, how likely is that test t would fail?”
P(H) [prior]: Prior to seeing the evidence E, how likely was the
hypothesis?

o For example, “How likely was line k to be the buggy line the first place?”
P(E): A normalization term (not important for our purposes)

P(H | E) =

12



Overall, in automated debugging:

We want to infer the location (l) to apply a fix action (a), based on the
available data (D):

P(l,a|D) o< P(D|l, a)P(l, a)

And fault localization is a special case of automated debugging, with
probabilities marginalized over the action space:

P(I|D) o« P(D|1)P(])

13



First example of analysis: SBFL

Test Coverage

+ Pass/Fail

Localization
Formula

Coverage matrix

Aggregator of matrix

Finding
Location

“Suspiciousness” for
each code element

14



Many formulae have been proposed

Table 2: Risk Evaluation formulae

Name Formula ‘ Name Formula
e o ef
Jaccard [4] W ‘ Ochiai [5] Jeqtmz)y(epten)
. . .
Tarantula [7] S AMPLE [6]  |onr — o4
ep+np eJc—}-'nf
Wong1 [9] ef ‘ Wong?2 [9] ef —€p
€p ifep, <2
Wong3 [9] ef —h,where h = ¢ 2+ 0.1(e, — 2) if2<e, <10
2.8+ 0.001(e, —10) ife, > 10
-1 ifny>0 e
Opl [8 Op2 [8 Ef i =Pt
P [8] {np o S P [8] f ept+np+1

(From Yoo, Evolving Human Competitive Spectra-Based Fault Localisation Techniques, 2013)

15



Assumptions about SBFL

©

Single Fault Assumption - assumes a single fault, for simplicity.

Deterministic Code - no flakiness.

Existence of failing test case - without one, it would be
impossible to locate a bug,.

16



Likelihood Function

e If atest executes the fault, the test will fail with probability p
e If atest doesn’t execute the fault, it cannot fail

P(t =fail|ll =fault Al €. t) =p
P(t =failll =fault Al ¢, t) =0



Simplified Conditional Probability

0 ef<F

P(l = fault|ty, ..., tp)
Vo la-p ep=F

Which is equivalent to Op1l, one of the maximal formulae from Yoo et al:

—1 1fnf >0 e
Opl [8 Op2 [8 ef — o
pl (8] {np otherwise ‘ p2 (8] I eptnptl

18



Back to general automated debugging

P(l,a|D) o< P(D|I, a)P(l, a)

More generally, we would like to infer both the entire patch - both the
location and the fix action.

Unlike the space of locations (I), actions are potentially infinite, so it
has previously been difficult to come up with different formulae.

19



One such attempt: Unified Debugging

e As an example, we could analyze the unified debugging approach
SeAPR from Benton et al., whose core assumption is that:

P(3t.(t =fail A t(; o) = pass)|(l,a) = fix) = p1 (8)
P(3t.(t = fail A t(p o) = pass)|(l, a) = fix) = p2 9)

e Patches that make a previously failing test pass after patch
application are likely to be indicative of the actual patch location (8)
and vice versa (9), thus pl > p2.

20



Optimal formula under assumptions

log(P((1, @) = fix|D)) < p* —yp~ (10)

where p™ is the number of high-quality patches at [, while p~ is the
log((1=p2)/(1=p1)) y,;
: 1
log (p1/p2) >
e ..which is equivalent to the Wong2 formula. Unfortunately, Benton et
al. didn’t experiment with Wong2:

number of low-quality patches at/,and y =

Tarantula | Ochiai | Ochiai2 | Op2 SBI Jaccard | Kulczynski | Dstar2

Arja 46.23% 40.05% | 38.66% | 33.57% | 53.88% | 39.91% 39.91% 40.60%
Avatar 52.16% 54.80% | 53.62% | 51.74% | 52.16% | 55.22% 35.22% 33.55%
Cardiimaen =7 290 -7 290 -7 290 =7 290 -1 41097 -7 290 =7 290 -7 290

(From Benton et al., Self-Boosted Automated Program Repair, 2021)

21



Recap of framework

©

As a means of analyzing automated debugging techniques, we
proposed using Bayesian inference.

With the framework, we could derive an SBFL formula proven to
to be maximal from first principles alone.

Furthermore, using the framework, we could suggest a different
formula for unified debugging that was better adapted.




D

3.
Prioritizing
Patches




BAPP, a patch prioritization technique

Derived from Uses Variable
Framework Values

o

W

Most implementation Uses variable values as
details are not guessed, additional information
but derived to prioritize patches

24



Principle of Value Change

e We observe the value change that would happen when a patch is
applied (with debuggers, to efficiently extract values for patches):

P(t = failing|(l, a) = fix A Ch(t,(l,a))) = p (13)
P(t = failing|(l, a) = fix A =Ch(t,(l,a))) =0 (14)

e If the correct fix (I, a) would change internal values of t, there is a
chance the test would fail (13); if the fix does not induce any chance, a
test cannot fail (14).

25



Final Formula

e Skipping a lot of infermediate derivation steps, we get:

(

—00 (Cf < F)

08P @) = BxID) o e (PlalDP(D) — acp (e = F)

e Where a = —log,(1 — p) (note that « > 0,as 1 —p < 1), and intuitively
controls how much to weight value change results.
e Fault localization also possible by marginalizing over fix action space.

26



Other modifications

P(l, a) = P(a|l) x P(l): Patch probabilities should be multiplied with
location probabilities, and sorted accordingly.

P, a) = P(a]l) x P(l): but the probability of a patch given a location is
often ignored. By modelling this term, we deprioritize patches from
locations with many possible patches:

Location 1, susp=0.3 Location 2, susp=0.4

27



BAPP Ranking

kPAR ranjk better (12) +  °

RQ1: Patch Prioritization Performance

Ranking Comparison

’ . BAPP rank better (27) —
100 0! 102 10° 104
kPAR Ranking

(a) Raw Ranks.

Ratio Distribution

Count

0 1/64 1/16 1/4 1 4 16
BAPP/kPAR ranking ratio (log scale)

(b) Rank Ratios.

28



RQ2: Fault Localization Performance

Ranking Comparison
Ochiai rank better (6) 1

—_
(e=]
M

accQk

New Ranking
S

100_

10° 10! 102
Ochiai Ranking

(a) Raw Ranks.

10~

BAPP rank better (27) — 41

acc@k Comparison
Ochiai

- BAPP

29



=
o

S
oo

Median Rank Ratio
=

o
DO

S
o
1

S
o
1

RQ3: Ablation Study

Ablation Study

i i
' i

_____________________________________________________________________________________

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

_________________________________________________________________________________

_______________________________________________________

Original +Dyn.Filter +P(a|l) +Multiply
Models

30



4.
Future Work




Framework-suggested future work

\

Patch action identification,
then localization:
P(l, a) = P(lla)P(a)

Efficient inference
algorithms for multiple-fault
scendarios

©

Modelling observation
correlation

4

Incorporation of other
information, such as
dependency

32



Conclusion

H Read our preprint!

Despite the long history of research in automated debugging,
there was no theoretic framework behind the techniques.

We propose that Bayesian inference can be used to
theoretically analyze existing techniques.

From our theoretic framework, we derive a patch prioritization
technique, and discuss interesting future work stemming from it.

Contact us at sungmin.kang@kaist.ac.kr
Find our preprint with the QR code above, or by searching for “A Bayesian Framework for Automated Debugging”

33


mailto:sungmin.kang@kaist.ac.kr

*

Extra Slides




LLM/ML

Machine learning, or large language models provide a strong prior for
debugging results

However, in my view, they do not seem to change the need or
formulation of the incorporation of new information

In this sense, perhaps embeddings are more interesting in the context
of my framework, as they might provide means to model result

correlation, efc.

55



