
LLMs are Few-shot Testers:

Exploring
LLM-based
General Bug
Reproduction
[Sungmin Kang, Juyeon Yoon], Shin Yoo
Presented on 2023-05-19 by Sungmin

Motivation

2

🚀

For example, many projects have systems to handle bug reports.

Users Report Bugs - Bug Reports!

3

Bug Reproduction

4

From natural language description… …to executable tests.

Reproducing tests are key to
automated debugging efficacy.

Automatic Bug Reproduction Would Help

5

We mine software repositories to find
many tests originate from bug reports.

1

Bug-revealing Test

Fault Localization

Automated Program
Repair

Feature

Test

Report

Test

28%

2

Reproducing tests are key to
automated debugging efficacy.

Automatic Bug Reproduction Would Help

6

We mine software repositories to find
many tests originate from bug reports.

2

Fault Localization

Automated Program
Repair

Bug-revealing Test

1

Feature

Test

Report

Test

28%

Only partial solutions have been explored

7

Soltani et al. analyzed crash stack traces to reproduce crashes.
However, crashes are only a small proportion of all bugs.

Song & Chaparro used traditional NLP tools to identify e.g. expected behavior.
However, they do not generate bug-reproducing tests.

Bug reproduction needs strong NLP capabilities

8

While a human can write a reproducing test with this report,
the expected behavior is implied, making it difficult to automatically process this report.

Language Models are key to tackling the problem

9

Simple example of test generation from GitHub Copilot page

“Just” using LLMs has low usability

10

Shuster et al. (2021) highlights the issue of
hallucination in LLMs like GPT-x.

O’Hearn noted in his ICSE’20 keynote that developers value
having less false positives from automatic tools

Overall:

11

The general bug reproduction problem
has been a challenge, due to the difficulty of NLP.

We propose LIBRO, which

uses LLMs to generate tests based
on provided bug reports …

… then applies post-processing to
ensure the developer only sees the
best results.

Approach

12

🔨

(image from thegradient.pub)

Language Models are Autocomplete Machines

13

Using Large Language Models

The first part of the prompt presents the bug report.

Formulating bug reproduction as autocomplete

14

Report Content

Using Large Language Models

The second part increases the likelihood of a bug-reproducing test
(from a language distribution perspective).

Formulating bug reproduction as autocomplete

15

Prompting Reproducing Test Generation

Using Large Language Models

LLMs are known to benefit with examples

16

A prompt template we used for experiments.
Note the example answers (highlighted).

Using Large Language Models

LLM-portion of LIBRO algorithm - note the prompt and N samples.
(in our case, we sampled N=50 tests as default.)

Given a prompt, sample N candidate tests.

17

Example
Test

Bug Report

T1

T2

T3

…

Tn

Example
Report

Prompt

LLM

Using Large Language Models

Showing 50 tests is infeasible

18

test1 {
 filler;
 filler2;
}

test2 {
 filler;
 filler2;
}

test3 {
 filler;
 filler2;
}

test4 {
 filler;
 filler2;
}

test5 {
 filler;
 filler2;
}

test6 {
 filler;
 filler2;
}

test7 {
 filler;
 filler2;
}

test8 {
 filler;
 filler2;
}

test9 {
 filler;
 filler2;
}

test10 {
 filler;
 filler2;
}

test11 {
 filler;
 filler2;
}

test12 {
 filler;
 filler2;
}

test13 {
 filler;
 filler2;
}

test14 {
 filler;
 filler2;
}

test15 {
 filler;
 filler2;
}

test16 {
 filler;
 filler2;
}

test17 {
 filler;
 filler2;
}

test18 {
 filler;
 filler2;
}

test19 {
 filler;
 filler2;
}

test20 {
 filler;
 filler2;
}

test21 {
 filler;
 filler2;
}

test22 {
 filler;
 filler2;
}

test23 {
 filler;
 filler2;
}

test24 {
 filler;
 filler2;
}

test25 {
 filler;
 filler2;
}

test26 {
 filler;
 filler2;
}

test27 {
 filler;
 filler2;
}

test28 {
 filler;
 filler2;
}

test29 {
 filler;
 filler2;
}

test30 {
 filler;
 filler2;
}

test31 {
 filler;
 filler2;
}

test32 {
 filler;
 filler2;
}

test33 {
 filler;
 filler2;
}

test34 {
 filler;
 filler2;
}

test35 {
 filler;
 filler2;
}

test36 {
 filler;
 filler2;
}

test37 {
 filler;
 filler2;
}

test38 {
 filler;
 filler2;
}

test39 {
 filler;
 filler2;
}

test40 {
 filler;
 filler2;
}

test41 {
 filler;
 filler2;
}

test42 {
 filler;
 filler2;
}

test43 {
 filler;
 filler2;
}

test44 {
 filler;
 filler2;
}

test45 {
 filler;
 filler2;
}

test46 {
 filler;
 filler2;
}

test47 {
 filler;
 filler2;
}

test48 {
 filler;
 filler2;
}

test49 {
 filler;
 filler2;
}

test50 {
 filler;
 filler2;
}

Postprocessing LLM Results

Some might not even compile!

19

test1 {
 filler;
 filler2;
}

test2 {
 filler;
 filler2;
}

test3 {
 filler;
 filler2;
}

test4 {
 filler;
 filler2;
}

test5 {
 filler;
 filler2;
}

test6 {
 filler;
 filler2;
}

test7 {
 filler;
 filler2;
}

test8 {
 filler;
 filler2;
}

test9 {
 filler;
 filler2;
}

test10 {
 filler;
 filler2;
}

test11 {
 filler;
 filler2;
}

test12 {
 filler;
 filler2;
}

test13 {
 filler;
 filler2;
}

test14 {
 filler;
 filler2;
}

test15 {
 filler;
 filler2;
}

test16 {
 filler;
 filler2;
}

test17 {
 filler;
 filler2;
}

test18 {
 filler;
 filler2;
}

test19 {
 filler;
 filler2;
}

test20 {
 filler;
 filler2;
}

test21 {
 filler;
 filler2;
}

test22 {
 filler;
 filler2;
}

test23 {
 filler;
 filler2;
}

test24 {
 filler;
 filler2;
}

test25 {
 filler;
 filler2;
}

test26 {
 filler;
 filler2;
}

test27 {
 filler;
 filler2;
}

test28 {
 filler;
 filler2;
}

test29 {
 filler;
 filler2;
}

test30 {
 filler;
 filler2;
}

test31 {
 filler;
 filler2;
}

test32 {
 filler;
 filler2;
}

test33 {
 filler;
 filler2;
}

test34 {
 filler;
 filler2;
}

test35 {
 filler;
 filler2;
}

test36 {
 filler;
 filler2;
}

test37 {
 filler;
 filler2;
}

test38 {
 filler;
 filler2;
}

test39 {
 filler;
 filler2;
}

test40 {
 filler;
 filler2;
}

test41 {
 filler;
 filler2;
}

test42 {
 filler;
 filler2;
}

test43 {
 filler;
 filler2;
}

test44 {
 filler;
 filler2;
}

test45 {
 filler;
 filler2;
}

test46 {
 filler;
 filler2;
}

test47 {
 filler;
 filler2;
}

test48 {
 filler;
 filler2;
}

test49 {
 filler;
 filler2;
}

test50 {
 filler;
 filler2;
}

Postprocessing LLM Results

Raw LLM Outputs

0

LIBRO’s post-processing in three steps

20

T

T T

T T

T
T3

T3
T

T

T
T

Decide if Results ReliableExecute and Cluster

2

Rank Tests

3

TnT3
T3T1

Tn

T2

1

TnT3

T3T3
T3

T3T1

Bug 1

T1

Bug 2

Tn

T3
T3

T1

Tn

T2

1

2

3

Select the file with greatest lexical similarity and inject the test; add import statements for unmet dependencies.

Injecting to target files

21

file1 file2 file3 … fileN

Postprocessing LLM Results

Execute Tests. Four results possible:

22

LLM-made
test

Compiler

Compile
failures

Compilable
Tests

Execution

Failing-in-
Buggy
(FIB)

Passing in
Buggy

Inspect

Reproducing
test

Non-
reproducing

1 2 3

4

Postprocessing LLM Results

Cluster FIB tests with error message

23

Postprocessing LLM Results

Show results only if cluster size large enough

24

Postprocessing LLM Results

Ranking tests with three heuristics (1)

25

Postprocessing LLM Results

Ranking tests with three heuristics (2)

26

Postprocessing LLM Results

Diagram of LIBRO

Recap

27

Results

28

📊

Evaluating the Technique

29

📊
RQ1: Efficacy

How many bugs reproduced? (D4J)

⏱
RQ2: Efficiency

How much resources are required?

🌎
RQ3: Generality

Are results similar on held-out data?

RQ1-2: LIBRO significantly outperforms baselines.RQ1-1: One-third of all bugs were successfully reproduced.

RQ1: Efficacy

30

The API call and actual execution of the test took the longest amount of time.

RQ2-2: Time cost of each component

31

Selecting by counting the failing-in-buggy tests was effective;

RQ2-3: Selection performance

32

Our within-FIB ranking technique was better than the random baseline.

RQ2-3: Ranking performance

33

RQ3-2: LIBRO selection and ranking heuristics generalize to novel data as well.

RQ3: Generality

34

RQ3-1: LIBRO demonstrating it works outside of its (potential) training data.

Successful Example

35

DateTimeZone.forOffsetHoursMinutes
cannot handle negative offset < 1 hour

DateTimeZone.forOffsetHoursMinutes(h,

m) cannot handle negative offset < 1 hour
like -0:30 due to argument range
checking. I used forOffsetMillis()
instead.
This should probably be mentioned in the
documentation or negative minutes be
accepted.

Bug Report: Joda-Time BUG #8

public void testForOffsetHoursMinutes_int_int() {
 ...
 assertEquals(DateTimeZone.forID("-00:15"),
DateTimeZone.forOffsetHoursMinutes(0, -15));
 ...
}

A developer-written test

public void testIssue() {
 DateTimeZone tz =
DateTimeZone.forOffsetHoursMinutes(0, -30);
 assertNotNull(tz);
}

A test generated by LIBRO

Examples and Failure Analysis

● When failures happened, we find that
○ 32.5% are due to a need of complex helper functions;
○ 27.5% are due to low report quality;
○ 20% are due to LLM misunderstanding of report;
○ 15% are due to dependency on external resources;
○ 7.5% are due to LLM synthesis limit (we set 256 tokens, or ~1000 characters).

36

Conclusion

37

We tackle the problem of
reproducing general bugs from reports.

1

We propose LIBRO, which combines LLMs and postprocessing
to effectively reproduce bug reports.

2

Our evaluation shows LIBRO successfully reproduces bugs,
and that its postprocessing heuristics work.

3

Contact us at sungmin.kang@kaist.ac.kr / juyeon.yoon@kaist.ac.kr
Find our preprint with the QR code above, or by searching for “Exploring LLM-based General Bug Reproduction”

Read our preprint!

Extra Slides

38

😶🌫️

● When failures happened, we find that
○ 32.5% are due to a need of complex helper functions;
○ 27.5% are due to low report quality;
○ 20% are due to LLM misunderstanding of report;
○ 15% are due to dependency on external resources;
○ 7.5% are due to LLM synthesis limit (we set 256 tokens, or ~1000 characters).

Example 1 - Need of Helper Functions

39

Invalid left-hand side of assignment not
detected

What steps will reproduce the problem?
Compile this: var x=0,y=1;x||y=8

What is the expected/actual output?
I expect an error, because this is parsed as
(x||y)=8, which is an invalid left-hand side of an
assignment. Instead, I get var x=0,y=1;x||y=8;

Bug Report: Google Closure BUG #84

public void testIssue108() {
 try {
 ScriptEngine se = new
ScriptEngineManager().getEngineByName("JavaScript");
 se.eval("var x=0,y=1;x||y=8");
 fail("IllegalArgumentException was expected");
 } catch (ScriptException e) {
 // ok
 }
}

A test generated by LIBRO(not bug-reproducing)

Fails to perfectly reproduce
the specialized test helper method

(here, parseError)

● When failures happened, we find that
○ 32.5% are due to a need of complex helper functions;
○ 27.5% are due to low report quality;
○ 20% are due to LLM misunderstanding of report;
○ 15% are due to dependency on external resources;
○ 7.5% are due to LLM synthesis limit (we set 256 tokens, or ~1000 characters).

Example 1 - Need of Helper Functions

40

Invalid left-hand side of assignment not
detected

What steps will reproduce the problem?
Compile this: var x=0,y=1;x||y=8

What is the expected/actual output?
I expect an error, because this is parsed as
(x||y)=8, which is an invalid left-hand side of an
assignment. Instead, I get var x=0,y=1;x||y=8;

Bug Report: Google Closure BUG #84

public void testIssue108() {
 try {
 ScriptEngine se = new
ScriptEngineManager().getEngineByName("JavaScript");
 se.eval("var x=0,y=1;x||y=8");
 fail("IllegalArgumentException was expected");
 } catch (ScriptException e) {
 // ok
 }
}

A Generated Test by LIBRO (not bug-reproducing)

Fails to perfectly reproduce
the specialized test helper method

(e.g., parseError)

● When failures happened, we find that
○ 32.5% are due to a need of complex helper functions;
○ 27.5% are due to low report quality;
○ 20% are due to LLM misunderstanding of report;
○ 15% are due to dependency on external resources;
○ 7.5% are due to LLM synthesis limit (we set 256 tokens, or ~1000 characters).

Example 2 - Low Report Quality

41

StrBuilder contains usages of
thisBuf.length when they should use size

While fixing LANG-294 I noticed that there are two
other places in StrBuilder that reference
thisBuf.length and unless I'm mistaken they
shouldn't.

Bug Report: Defects4J Lang-60

External Dependency

● When failures happened, we find that
○ 32.5% are due to a need of complex helper functions;
○ 27.5% are due to low report quality;
○ 20% are due to LLM misunderstanding of report;
○ 15% are due to dependency on external resources;
○ 7.5% are due to LLM synthesis limit (we set 256 tokens, or ~1000 characters).

42

PAX header entry name ending with /
causes problems

There seems to be a problem when a PAX header
entry (link flag is 'x') has a name ending with "/".
The TarArchiveEntry.isDirectory() check ends
up returning true because of the trailing slash
which means no content can be read from the
entry (...)

Bug Report: Commons-Compress BUG #38

public void testPaxHeaderFails() throws Exception {
 FileInputStream fin = null;
 try {
 fin = new
FileInputStream("/path/to/docker-image-layer.tar");
 TarArchiveInputStream tin = new
TarArchiveInputStream(fin);
 (...)

A test generated by LIBRO (not bug-reproducing)

Fails due to missing file;
The generated test is dependent

on an external file

Synthesis limit example

43

● When failures happened, we find that
○ 32.5% are due to a need of complex helper functions;
○ 27.5% are due to low report quality;
○ 20% are due to LLM misunderstanding of report;
○ 15% are due to dependency on external resources;
○ 7.5% are due to LLM synthesis limit (we set 256 tokens, or ~1000 characters).

